Bullet Collision Detection & Physics Library
btSequentialImpulseConstraintSolver.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
17 #define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
18 
19 class btIDebugDraw;
21 class btDispatcher;
22 class btCollisionObject;
29 
31 
34 {
35 protected:
41 
48  // When running solvers on multiple threads, a race condition exists for Kinematic objects that
49  // participate in more than one solver.
50  // The getOrInitSolverBody() function writes the companionId of each body (storing the index of the solver body
51  // for the current solver). For normal dynamic bodies it isn't an issue because they can only be in one island
52  // (and therefore one thread) at a time. But kinematic bodies can be in multiple islands at once.
53  // To avoid this race condition, this solver does not write the companionId, instead it stores the solver body
54  // index in this solver-local table, indexed by the uniqueId of the body.
56 
60  int m_cachedSolverMode; // used to check if SOLVER_SIMD flag has been changed
61  void setupSolverFunctions( bool useSimd );
62 
64 
65  void setupFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
66  btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,
67  btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
68  const btContactSolverInfo& infoGlobal,
69  btScalar desiredVelocity=0., btScalar cfmSlip=0.);
70 
71  void setupTorsionalFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
72  btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
73  btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
74  btScalar desiredVelocity=0., btScalar cfmSlip=0.);
75 
76  btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0., btScalar cfmSlip=0.);
77  btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar torsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity=0, btScalar cfmSlip=0.f);
78 
79 
80  void setupContactConstraint(btSolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
81  const btContactSolverInfo& infoGlobal,btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
82 
83  static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
84 
85  void setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, int solverBodyIdA,int solverBodyIdB,
86  btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
87 
89  unsigned long m_btSeed2;
90 
91 
92  btScalar restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
93 
94  virtual void convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
95 
96  void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
97 
98  virtual void convertJoints(btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal);
99  void convertJoint(btSolverConstraint* currentConstraintRow, btTypedConstraint* constraint, const btTypedConstraint::btConstraintInfo1& info1, int solverBodyIdA, int solverBodyIdB, const btContactSolverInfo& infoGlobal);
100 
101  virtual void convertBodies(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
102 
104  {
105  return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
106  }
107 
109  {
110  return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
111  }
112 
113  //internal method
114  int getOrInitSolverBody(btCollisionObject& body,btScalar timeStep);
115  void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep);
116 
117  btScalar resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
118  btScalar resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
119  btScalar resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
120  btScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
122  {
123  return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
124  }
125 
126 protected:
127 
128  void writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
129  void writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
130  void writeBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
131  virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
132  virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
133  virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
134 
135  virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
136  virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
137 
138 
139 public:
140 
142 
145 
146  virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
147 
149  virtual void reset();
150 
151  unsigned long btRand2();
152 
153  int btRandInt2 (int n);
154 
155  void setRandSeed(unsigned long seed)
156  {
157  m_btSeed2 = seed;
158  }
159  unsigned long getRandSeed() const
160  {
161  return m_btSeed2;
162  }
163 
164 
166  {
168  }
169 
171  {
172  return m_resolveSingleConstraintRowGeneric;
173  }
175  {
176  m_resolveSingleConstraintRowGeneric = rowSolver;
177  }
179  {
180  return m_resolveSingleConstraintRowLowerLimit;
181  }
183  {
184  m_resolveSingleConstraintRowLowerLimit = rowSolver;
185  }
186 
188  btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
189  btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
190  btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric();
191 
193  btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
194  btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit();
195  btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit();
196 };
197 
198 
199 
200 
201 #endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
202 
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
btConstraintSolverType
btConstraintSolver provides solver interface
void setConstraintRowSolverGeneric(btSingleConstraintRowSolver rowSolver)
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...
btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric
ManifoldContactPoint collects and maintains persistent contactpoints.
btSingleConstraintRowSolver getActiveConstraintRowSolverLowerLimit()
btAlignedObjectArray< btSolverBody > m_tmpSolverBodyPool
btScalar(* btSingleConstraintRowSolver)(btSolverBody &, btSolverBody &, const btSolverConstraint &)
btScalar resolveSplitPenetrationSIMD(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
btCollisionObject can be used to manage collision detection objects.
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations...
Definition: btIDebugDraw.h:29
The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (...
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:82
btScalar resolveSplitPenetrationImpulse(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
virtual btConstraintSolverType getSolverType() const
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:108
btAlignedObjectArray< btTypedConstraint::btConstraintInfo1 > m_tmpConstraintSizesPool
TypedConstraint is the baseclass for Bullet constraints and vehicles.
#define BT_DECLARE_ALIGNED_ALLOCATOR()
Definition: btScalar.h:403
unsigned long m_btSeed2
m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction ...
btScalar resolveSplitPenetrationImpulseCacheFriendly(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
The btDispatcher interface class can be used in combination with broadphase to dispatch calculations ...
Definition: btDispatcher.h:77
btSingleConstraintRowSolver getActiveConstraintRowSolverGeneric()
btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
void setConstraintRowSolverLowerLimit(btSingleConstraintRowSolver rowSolver)
btAlignedObjectArray< int > m_kinematicBodyUniqueIdToSolverBodyTable